New composite material that could revolutionise car design and manufacturing

10-Feb-10
Parts of a car's bodywork could one day double up as its battery, according to the scientists behind a new €3.4 mln project. Researchers from Imperial College London and their European partners are developing a prototype material which can store and discharge electrical energy and which is also strong and lightweight enough to be used for car parts. Ultimately, they expect that this material could be used in hybrid petrol/electric vehicles to make them lighter, more compact and more energy efficient, enabling drivers to travel for longer distances before needing to recharge their cars. In addition, the researchers believe the material, which has been patented by Imperial, could potentially be used for the casings of many everyday objects such as mobile phones and computers, so that they would not need a separate battery. This would make such devices smaller, more lightweight and more portable. In the new project, the scientists are planning to develop the composite material so that it can be used to replace the metal flooring in the car boot, called the wheel well, which holds the spare wheel. Volvo is investigating the possibility of fitting this wheel well component into prototype cars for testing purposes. The team says replacing a metal wheel well with a composite one could enable Volvo to reduce the number of batteries needed to power the electric motor. They believe this could lead to a 15% reduction in the car's overall weight, which should significantly improve the range of future hybrid cars. Current hybrid cars consist of an internal combustion engine, which is used when the driver accelerates the car, and an electric motor powered by batteries, which turns on when the car is cruising. The cars need a large number of batteries to power the electric motor, which makes the vehicle heavier, meaning that the car uses up more energy and the batteries need regular recharging at short intervals. The researchers say that the composite material that they are developing, which is made of carbon fibres and a polymer resin, will store and discharge large amounts of energy much more quickly than conventional batteries. In addition, the material does not use chemical processes, making it quicker to recharge than conventional batteries. Furthermore, this recharging process causes little degradation in the composite material, because it does not involve a chemical reaction, whereas conventional batteries degrade over time. The material could be charged by plugging a hybrid car into household power supply. The researchers are also exploring other alternatives for charging it such as recycling energy created when a car brakes. For the first stage of the project, the scientists are planning to further develop their composite material so that it can store more energy. The team will improve the material's mechanical properties by growing carbon nanotubes on the surface of the carbon fibres, which should also increase the surface area of the material, which would improve its capacity to store more energy. They are also planning to investigate the most effective method for manufacturing the composite material at an industrial level. The 3-year European Union funded project includes researchers from the Departments of Chemistry, Aeronautics and Chemical Engineering and Chemical Technology at Imperial College London. European academic and industrial partners include Swerea SICOMP, INASCO Hella, Chalmers, Advanced Composites Group, Nanocyl, Volvo Car Corporation, Bundesanstalt Fur Materialforschung undprufung, ETC Battery and Fuel Cells Sweden.
  More News  Post Your Comment
{{comment.Name}} made a post.
{{comment.DateTimeStampDisplay}}

{{comment.Comments}}

COMMENTS

0

There are no comments to display. Be the first one to comment!

*

Name Required.

*

Email Id Required.

Email Id Not Valid.

*

Mobile Required.

Email ID and Mobile Number are kept private and will not be shown publicly.
*

Message Required.

Click to Change image  Refresh Captcha
Reclamax single step plastic recycling machine

Reclamax single step plastic recycling machine