Thin-film bio-copolymer raises physical limit to microprocessor performance

15-May-12
The development of a new copolymer, combining sugar-based with oil-based macromolecules, makes it possible to design ultra-thin films capable of self-organization on a scale of just 5 nm. This opens up new horizons for increasing the capacity of hard discs and the speed of microprocessors. The result of a French-American collaboration spearheaded by the Centre National de la Recherche Scientifique (CNRS), published in ACS Nano, this work has led to the filing of two patents. This new class of thin films based on hybrid copolymers could give rise to numerous applications in flexible electronics, in areas as diverse as nanolithography, biosensors and photovoltaic cells. the team headed by Redouane Borsali, CNRS senior researcher at the Centre de Recherches sur les Macromolécules Végétales (CERMAV), came up with a hybrid material, combining sugar-based and petroleum-derived (silicon-containing polystyrene) polymers with widely different physical and chemical characteristics. This copolymer, formed of highly incompatible elementary building blocks, is similar to an oil bubble attached to a small water bubble. The researchers have shown that this type of structure is capable of organizing itself into sugar cylinders within a petroleum-based polymer lattice, each structure having a size of 5 nanometers, i.e. much smaller than the resolution of "old" copolymers, exclusively composed of petroleum derivatives. In addition, this new generation of material is made in part from an abundant, renewable and biodegradable resource: sugar. Achieving this resolution makes it possible to envisage numerous applications in flexible electronics: miniaturization of circuit lithography, a six-fold increase in information storage capacity (the theoretical limit for devices using flash memory, such as USB memory sticks, would increase from 1Tb to 6Tb), enhanced performance of photovoltaic cells, biosensors, etc. The researchers are now seeking to improve control of these nano-glycofilms' large-scale organization and design in different self-organized structures.
  More News  Post Your Comment
{{comment.Name}} made a post.
{{comment.DateTimeStampDisplay}}

{{comment.Comments}}

COMMENTS

0

There are no comments to display. Be the first one to comment!

*

Name Required.

*

Email Id Required.

Email Id Not Valid.

*

Mobile Required.

Email ID and Mobile Number are kept private and will not be shown publicly.
*

Message Required.

Click to Change image  Refresh Captcha