Western University researchers have developed a thinner-than-thin polymer that could exponentially expand the memory storage of our computers and smartphones. The polymer is made of organic material, and not silicon now used in flash drives, and can be stretched 10,000 times thinner than a human hair. In commercial application it could be used to help store undreamed-of volumes of data.
The use of nanoscale magnetic whirlpools, known as magnetic skyrmions, to create novel and efficient ways to store data will be explored in a new £7M research programme led by Durham University. The UK team, funded by the Engineering and Physical Sciences Research Council (EPSRC), now aims to make a step change in our understanding of skyrmions with the goal of producing a new type of demonstrator device in partnership with industry. Skyrmions, tiny swirling patterns in magnetic fields, can be created, manipulated and controlled in certain magnetic materials. Inside a skyrmion, magnetic moments point in different directions in a self-organised vortex. Skyrmions are only very weakly coupled to the underlying atoms in the material, and to each other, and their small size means they can be tightly packed together. Together with the strong forces that lock magnetic fields into the skyrmion pattern, the result is that the magnetic information encoded by skyrmions is very robust. Scientists can potentially move a skyrmion with 100,000 times less energy than is needed to move a ferromagnetic domain, the objects currently used in the memory of our computers and smartphones. Currently when we access information through the web, we remotely use hard disk drives that generate lots of heat and waste lots of energy. Skyrmionic technology could allow this to be done on smaller scale devices which would use much less energy.
Previous News
Next News
{{comment.DateTimeStampDisplay}}
{{comment.Comments}}